Penerapan Model Vector Autoregressive (VAR) untuk Memprediksi Harga Cengkeh, Kopra dan Pala di Sulawesi Utara
نویسندگان
چکیده
منابع مشابه
Watermarking pada Video: Robustness, Impercetibility dan Pendekatan untuk Domain Terkompresi
ABSTRAK Meningkatnya penggunaan dokumen digital khususnya multimedia (citra, audio, video) dan kemudahan transmisi data melalui Internet meningkatkan kebutuhan terhadap keamanan data terhadap pelanggaran hak cipta. Watermarking merupakan pendekatan yang telah banyak digunakan dan merupakan bagian dari Digital Right Management (DRM) yang dibuat untuk memenuhi kebutuhan tersebut. Khusus untuk vid...
متن کاملDebt Contagion in Europe: A Panel-Vector Autoregressive (VAR) Analysis
Abstract: The European sovereign-debt crisis began in Greece when the government announced in December, 2009, that its debt reached 121% of GDP (or 300 billion euros) and its 2009 budget deficit was 12.7% of GDP, four times the level allowed by the Maastricht Treaty. The Greek crisis soon spread to other Economic and Monetary Union (EMU) countries, notably Ireland, Portugal, Spain and Italy. Us...
متن کاملModel Uncertainty in Panel Vector Autoregressive Models
We develop methods for Bayesian model averaging (BMA) or selection (BMS) in Panel Vector Autoregressions (PVARs). Our approach allows us to select between or average over all possible combinations of restricted PVARs where the restrictions involve interdependencies between and heterogeneities across cross-sectional units. The resulting BMA framework can find a parsimonious PVAR specification, t...
متن کاملA Vector Autoregressive ENSO Prediction Model
The authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño–Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VARmodel implicitly captures subsurface forcing ob...
متن کاملVector Autoregressive Model for Missing Feature Reconstruction
This paper proposes a Vector Autoregressive (VAR) model as a new technique for missing feature reconstruction in ASR. We model the spectral features using multiple VAR models. A VAR model predicts missing features as a linear function of a block of feature frames. We also propose two schemes for VAR training and testing. The experiments on AURORA-2 database have validated the modeling methodolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: d'CARTESIAN
سال: 2019
ISSN: 2685-1083,2302-4224
DOI: 10.35799/dc.8.2.2019.23967